Simplex L1000, Part 1: Series Overview

This is the first in a 4-part series covering the Simplex L1000 series. This article will provide a series overview, the remaining articles will cover changing and resetting combinations, installation, and servicing, respectively. 

Introduction

For nearly 50 years the Simplex line has represented the most popular combination locks in the North American market. Found in a widespread of settings and situations, the L1000 is the shining star of the Simplex line. Figure 1 shows the newest version of the L1000, less core. You can find the L1000 in commercial buildings, retail stores, community pool and tennis gates, banks, hospitals, government facilities and many more places. I’ve long noticed that, perhaps due to its ubiquity in the same, common situations, a good number of locksmiths aren’t fully aware of all features and functions of the L1000. This article will go over all features and functions of the L1000 series to fully educate locksmiths, new and old.

Figure 1

Figure 1

Series Overview

The L1000 is a fully mechanical combination lock in a cylindrical lockset format. The L1000 carries a 3-hour UL/ULC fire rating and features ADA-compliant lever trim. It is also D.O.D. 5220.22M compliant. The L1000 is weather-resistant which allows for exterior use, such as the previously mentioned community pool and tennis gates. It comes with a 3-year warranty and I can attest to Kaba’s commitment to honoring this warranty through my own experience. I serviced an L1000 last fall that exhibited signs of a defective clutch. I simply provided the lock’s serial number to a Kaba tech support representative via phone and Kaba shipped replacement parts, free of charge.  Just make sure that you register each L1000 you install with Kaba via their website: www.kabaaccess.com. 
The L1000 is pre-assembled to accommodate 1 5/8” to 1 7/8” thick doors but it can be re-configured right out of the box to handle doors as thin as 1 3/8” and as thick as 2 1/4” through the removal or inclusion of spacers (Figure 2).

Figure 2

Figure 2


It’s available for doors and gates in 2 3/4” and 2 3/8” backsets and can be retrofit into an existing 160 or 161 prep. Don-Jo makes a wrap-around (part no. 15 CW) for the L1000 series to fit other existing preps, such as for mortise locks, as well (Figure 3).
Figure 3

Figure 3


The L1000 comes with a standard 1/2” throw latch but 3/4” throw latches are available for fire-rated assemblies requiring their use (Figure 4).
Figure 4

Figure 4


Both latches can be used in conjunction with the included standard and ANSI strikes (Figure 5).  
Figure 5

Figure 5


Satin Chrome (US26D/626) and Antique Brass (US5/609) are standard finishes for the L1000 but Bright Brass (US3/605) and Bright Chrome (US26/625) finishes are available. Key override options are available in SFIC (B Option), LFIC, and FSIC formats. Supported LFIC formats include Medeco (M), ASSA (M), Yale (M), and Abloy (M) 5 or 6 pin cores, Corbin Russwin (C) 6 pin cores, and Sargent (R) cores. Schlage (S) FSIC is also available. 
L1000 series locks are factory handed and are not field reversible. It is important to verify the doors handing prior to placing an order for or surveying for the installation of an L1000.  

Models

There are 5 models for the L1000, each with different features and/or functions: 
Model 101x utilizes just a combination entry. Model 102x builds on to the 101x by offering combination entry with a key override option. These two models are by far the most popular and can be used in a variety of situations. Model 103x offers a passage function. The passage function allows the user(s) to place the lock into “passage mode”, or allowing access without using the code, by utilizing a thumbturn or key (DF5) on the inside trim. Model 104x offers a passage function with a key override option. 
Model 1076 is the privacy (lockout) function. This model allows a user to disable outside codes temporarily by pressing a thumbturn on the insider lever (Figure 6).

Figure 6

Figure 6


The key override function on the outside trim will still operate, however, to allow for emergency access. The privacy function is popular bathrooms restricted to staff or personnel use only. Unlike other models, Model 1076 can only be ordered with a “6” lock device option, which is a 3/4″ throw latch.  

Selling, Surveying, and Ordering 

The L1000 has several excellent features that can help you market and sell them effectively. The entire Simplex line centers around the ability to allow access without providing physical credentials, such as a keys or cards/fobs. This is done, obviously, through a combination. The L1000 therefore allows access without the added cost, time, and planning of issuing the physical credentials. In the event of a termination or loss of privilege, changing the combination is more cost effective for the customer than rekeying and, in some cases, reprogramming cards/software. This is a great source of recurring revenue.  
Familiarity is another great selling point. Most customers will have already seen, and perhaps used, an L1000 or its sister model: the Simplex 1000 (knob trim version). This makes usage quite simple and requires very little, if any, customer training. Customers love simplicity after all. 
Due to its popularity, the L1000 is readily available through distribution. This availability makes turnaround times for quoted jobs quick and painless which bodes well for both you and your customer. There are no batteries or wires, so maintenance is limited. The locks can be installed, either brand new or retrofit, easily on a large majority of doors. Ordering and product selection is made simple via Kaba’s Simplex Catalog. I have made minor edits to fit the entire Simplex L1000 model/option order page onto a single page. Scan this and keep a copy, or copies, on your truck to make quoting/ordering as simple as possible until fully committed to memory. 

By |2020-04-20T09:00:11+00:00April 20th, 2020|All, Combination Locks, Mechanical Combination|0 Comments

The Simplex Combination Chamber

For nearly 50 years the Simplex line has represented the most popular combination locks in the North American market. Even if you aren’t actively involved in the lock/security industry, you’ve seen them. Simplex locks are everywhere. Per KABA’s website:
Simplex mechanical pushbutton locks offer a convenient way to control access between public and private areas. There are no keys or cards to manage, no computers to program, no batteries to replace, and combinations can be changed in seconds without removing the lock from the door.
The brain(s) of the Simplex line, to speak, is the combination chamber. It stores the code and validates or denies an entered code. Let’s explore the Kaba Simplex combination chamber.

KABA Simplex Combination Chamber(s) Part Numbers

Combination chamber is really a “catch-all” term as there are more than one type of combination chamber used in the Simplex line. Some combination chambers are specifically suited for a single Simplex model while others can be used for multiple Simplex models. Originally, combination chambers were assigned part numbers that began with “M”. For example, there were/are M56 and M54 and M71 combination chambers. Somewhere along the line the part numbers were changed. I suspect this was due to a design change but whatever the case may be, they are now:

Simplex Model Old Chamber Part No. New Chamber Part No.
900 M55 74080-000-01
1000/L1000 M56/M63 74366-000-01
2000 74459-000-01
2015 742412-000-01
3000 M56/M63 74366-000-01
5000 74832-000-01
6200 M64 74870-000-01
7100 M71 74660-000-01
8100 M56/M63 74366-000-01
9600 M54 74014-000-01

 

Nearly all models of the Simplex line utilize the same combination chamber, there are really only slight nuances between them. The outlier of the Simplex family is the Simplex 900 which features a design radically different from the rest. The Simplex 900 really deserves its own article and perhaps I will one day write one but, for now, the information in this article relates to every lock in the Simplex line except the Simplex 900.

Inside of the KABA Simplex Combination Chamber and How They Work


Let’s start with the key stems. The key stems are what interact with the buttons of the lock. Each key stem is connected two gears. The first set of gears is directly connected each key stem. Upon the pressing of a key stems, the first set of gear turns a second set of gears.

These second set of gears are what you see in the above picture and what interact with the unlocking slide. These second set of gears are equipped with gates, or recesses, inside of them. When the correct combination is entered, the gates all line up to allow the unlocking slide to move upwards and enter into them. The handle of the lock is turned which rotates the control shaft, via linkages inside of the lock body, and lifts the unlocking slide into the aligned gates. Because the unlocking slide is spring loaded, once the control shaft lifts it, it snaps back down into it’s normal resting position while simultaneously resetting all gears and buttons via cams attached to the control shaft.

Here we can see the correct combination already entered and all of the gates aligned, ready to receive the unlocking slide.

And finally the unlocking slide moves up, allowing the lock to be unlocked.

Going back a moment, we can see the aforementioned first set of gears above. These gears are of no real importance except to the function of the combination chamber itself. It should be noted that these are not the gears that interface with the unlocking slide and should not be confused with them. Also pictured is the unlocking slide’s spring; it is a tension spring so that the unlocking slide is pulled away from the gears at all times unless forced up via the control shaft.

Decoding the KABA Simplex Combination Chamber

Now that we’re familiar with the key parts of a KABA Simplex combination chamber and how it works, let’s go through the process of decoding one. Decoding of the KABA Simplex combination chamber is required when the code is lost or forgotten. There is no possible way of decoding a KABA Simplex combination chamber with the lock on the door; it requires disassembly of the lock and removal of the combination chamber. If you aren’t familiar with the disassembly process for a KABA Simplex lock, KABA has produced videos and published them on their YouTube channel. We also have the instructions for this process for every current Simplex model in our Mechanical Combination page in the Library (under the Manufacturer’s Literature and Manuals tab).
The process for decoding KABA Simplex combination chambers used to be very tedious and frustrating. It wasn’t difficult, it just required many steps and the removal of a few tiny parts that could easily become lost. I’ve decoded dozens and dozens of Simplex combination chambers in the field. Not once have I ever used the method that KABA once taught. Yes, I do have to remove the lock from the door and remove the chamber links and the combination chamber but once the combination chamber is in hand, I’m either done or one more step from being done. Confused? Ok, let me explain.

  • Combination chambers manufactured prior to 12/15/2010 had solid combination covers. You can’t see anything on the inside of these combination chambers; you must remove the combination cover itself to view the gears and thus decode the combination. When KABA redesigned their combination chambers, they decided to utilize covers with viewing holes that allowed your to see the second set of gears.
  • Combination chambers manufactured after 12/15/2010 will have these holes in the cover.

A combination chamber manufactured after 12/15/2010.

The decoding process that I and many others have always used for combination chambers with solid combination covers doesn’t involve disassembly of the combination chamber beyond the combination cover’s removal – we simply take note of the positions of the gears and derive the existing code from it. KABA must have agreed with this method because now all combination chambers are designed and built to facilitate this through the use of the aforementioned viewing holes.

With that said, let’s start the process of decoding a combination chamber. Regardless of when the combination chamber was manufactured, the process is virtually the same. If your combination chamber doesn’t have viewing holes, you simply have to remove the cover by gently prying it away from the rest of the chamber. It’s not hard, don’t force it.
The goal of the decoding process is to align all gates with the unlocking slide. When the gates are aligned with the unlocking slide the shearline is established. This is KABA’s terminology, not mine, but I guess it’s accurate enough to work. When a gear is at the shearline it means that the gear is set, so to speak. This is an important piece of information when decoding a combination chamber: gates already set at the shearline are not used in the combination.
Let’s decode a combination using a brand new, factory default combination chamber. The default code is 2 and 4 pressed together, and then 3. For the purpose of this article, let’s pretend we didn’t know that.
What do you notice?

We can immediately see that gears 1 and 5 are at the shear line. This tells us that they are not used in the combination. Our combination will utilize gears 2, 3, and 4. Furthermore, we can see that gear 3 is very close to being at the shearline. This is our next clue. Each gear utilized in a combination will rotate towards the shearline whenever a button in the combination is pressed. This means that gears closest to the shearline are the last utilized in the combination. After decoding a few combination chambers, you will learn their relationship to the shearline and immediately be able to tell if they are the last or next to last button used in the combination. With this piece of information, therefore, we know that 3 is not the first button utilized in the combination.
By process of elimination, we know that either 2 or 4 or 2 + 4 are the first digit(s) of the combination. But which is it? Here is the next tip: each key stem has enough play in it that you can almost move it’s corresponding gear to it’s next position. In other words, we can see what’s going to happen with out committing to pressing a button and having to start all over if we messed up (more on that shortly). By pressing both 2 and 4 key stems, we see that their behavior is nearly identical. Each gear is in the same position. When two or more gears are in the same position, they are used simultaneously in the combination as long as their original position is not already at the shearline. We can therefore use this information to make an informed decision: the first part of the combination is 2 and 4 pressed together.

Now we’re getting somewhere. We’ve almost got the combination. We can see that the 2nd and 4th gear are almost at the shearline. The 3rd gear has moved slightly but is still the furthest from the shearline. We now know that it is the next part of the combination.

And there we have it. All gears are aligned at the shearline. We have decoded the chamber. Before we start the resetting/code changing process, let’s address a few final points:

  • If you mess up during the decoding process at any point, simply rotate the control shaft counter-clockwise (when viewing from the key stem side). This will reset the combination chamber, so to speak, and allow you to start over. Rotating the control shaft will take some force so you’ll more than likely need to do it with a pair of needle-nose pliers or similar tool.
  • 4 or 5 single digit combinations can be very difficult to decode. That is because certain gears will be so far from the shearline that even slight depression of the key stem won’t allow you to see the gate. A flashlight aimed inside of the combination chamber greatly assists if this is the case.

Changing the Code on the KABA Simplex Combination Chamber

Now that we know the existing combination, we can change the code. This can be done in one of two ways:

  1. Reassemble the entire lock and change the combination on the door.
  2. Change the combination by directly interfacing with the combination chamber.

There is no right or wrong answer. It’s a matter of preference. If you chose to reassemble the lock first and then change the combination, the instructions for your specific Simplex model are available online. Here are the instructions and here is a video showing the process of changing the combination of a Simplex 1000/L1000, for example.
If you choose to change the combination with the combination chamber in hand, that’s no problem either. Let’s walk through that process:
1. Using the key stems, enter the existing code to align the gears at the shearline.
2. Depress the lockout slide.
Yeah, yeah I hear you, “what’s the lockout slide?” The lockout slide is located at the top of the combination chamber. It looks like, in the words of KABA, a spark plug.

Once you depress the lockout slide, you’ll notice that the gears shift down towards the control shaft (or should if you’re doing it right!).
3. When viewing the combination chamber from the side with key stems, rotate the control shaft counterclockwise.
This will “clear the chamber” and prepare the gears to accept their new sequence. After rotating the control shaft, the lockout slide should move back up. The button below, known as the code change button, should stay depressed.
4. Enter the new code.
Each key stem should click once depressed.
5. When viewing the combination chamber from the side with key stems, rotate the control shaft clockwise.
The code change button should pop back up.
6. If correctly done, the gears should be scrambled according to their sequence. Enter the new combination to ensure that all gears line up at the shearline. If not, something was done wrong and you’ll need to either attempt to change the combination again or you’ll need to decode the new, unknown code and try again.

By |2018-06-05T09:00:40+00:00June 5th, 2018|All, Locks, Mechanical Combination|1 Comment
Go to Top
hacklink al hack forum crack forum php shell indir siber güvenlik blog